Um7.ru

Аренда стройтехники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическое сопротивление участка цепи

Согласно закону Ома сила тока в электроцепи прямо пропорционально зависима от напряжения и обратно пропорционально от сопротивления.

Закон Ома справедлив и в электролитах. В общем виде закон Ома характеризует однородную цепь без источника питания.

Математически данный закон выглядит так:
(I=) ,
где (R) – сопротивление участка электроцепи (Ом).

В электротехнике закон Ома считается основополагающим, с его использованием изучается и рассчитывается любая электроцепь, устанавливается соотношение между различными ее параметрами.

Вольтамперной характеристикой называется функциональная зависимость элемента электроцепи. Она показывает значимые электрические параметры элементов. Данную зависимость записывают таким образом:
(I=I(U)) .

Вольтамперная характеристика в разных ситуациях может быть разной формы. Самая простая вольтамперная характеристика выражена формулой Ома. Этот ученый проводил многообразные опыты с металлическим проводником, которыми доказал выдвинутую им теорию.

Для решения разнообразных задач, связанных с электрическими цепями, закон Ома нужно трактовать как теоретически, так и на практике. При неправильном его использовании возникают различного рода погрешности.

§ 2.4. Закон Ома для участка цепи. Сопротивление проводника

В предыдущем параграфе было установлено, что упорядоченное движение свободных заряженных частиц в проводнике вызывается электрическим полем.

В случае постоянного тока это поле представляет собой потенциальное стационарное поле. Разность потенциалов между концами проводника определяет силу тока в нем: I = F(φ1 — φ2). Эта зависимость называется вольт-амперной характеристикой проводника. Установление ее играет первостепенную роль при изучении явлений, связанных с прохождением тока.

Закон Ома

Наиболее простой вид имеет вольт-амперная характеристика металлических проводников и растворов электролитов.

Впервые (для металлов) ее установил немецкий ученый Георг Ом в 1826 г., поэтому зависимость силы тока от напряжения носит название закона Ома.

Георг Ом начал свои опыты по установлению зависимости между силой тока в проводнике и разностью потенциалов на его концах в 20-х гг. XIX в. Ом экспериментировал с проволоками разной длины, разной толщины (будучи сыном слесаря, он знал, как вытягивать металлическую проволоку разной толщины для своих опытов), изготовленными из разных металлов, и даже проводил опыты при различной температуре, варьируя каждый фактор поочередно как все настоящие ученые. Батареи в те времена были еще очень слабые, они создавали непостоянный ток. Поэтому Ом пользовался в качестве источника тока термопарой*, один из спаев которой был помещен в пламя. Он использовал грубый магнитный амперметр, а разности потенциалов изменял путем изменения температуры или числа термоспаев.

Теоретические выводы и экспериментальные результаты были изложены Омом в опубликованной в 1826 г. книге. Однако они не нап1ли понимания. Метод грубого экспериментирования по заранее намеченному плану казался малопривлекательным в эпоху увлечения философией. Признание пришло лишь 23 года спустя после выхода книги. В 1849 г. Ом получил должность профессора Мюнхенского университета.

На рисунке 2.12 изображен участок цепи 1, 2. Условимся считать положительным на правление слева направо. Тогда напряжение (разность потенциалов) на рассматриваемом участке равно U = φ1 — φ2, где φ1 — потенциал в точке 1 (в начале участка), а φ2 — потенциал в точке 2 (в конце участка). Если φ1 > φ2, то U > 0 и ток течет в направлении от точки 1 к точке 2, так как в эту сторону направлены линии напряженности электрического поля внутри проводника. Следовательно, и сила тока I тоже положительна (I > 0).

Читайте так же:
Реноватор для резки металла

Ом экспериментально установил прямую пропорциональную зависимость между силой тока и напряжением;

Эта зависимость справедлива как для металлов, так и для растворов (расплавов) электролитов.

Зависимость (2.4.1) можно записать в виде равенства

Это равенство и называется законом Ома для участка цепи. Здесь G — коэффициент пропорциональности, значение которого не зависит от напряжения на концах проводника и от силы тока в нем. Коэффициент пропорциональности зависит от самого проводника и поэтому является его характеристикой. Этот коэффициент называют проводимостью проводника.

Таким образом, закон Ома для участка цепи содержит проверенное на опыте утверждение о том, что сила тока прямо пропорциональна разности потенциалов; одновременно он содержит определение проводимости проводника. Закон Ома можно сформулировать так: сила тока в проводнике прямопропорциональна проводимости проводника и напряжению (разности потенциалов) на его концах.

Величину, обратную проводимости проводника

называют электрическим сопротивлением или просто сопротивлением. Следовательно, сопротивление тоже является характеристикой проводника. Исторически сложилось, что именно сопротивление считается основной электрической характеристикой проводника.

Если проводимость G выразить через сопротивление , то формула (2.4.2) примет вид:

Выражение (2.4.3) представляет собой другую формулировку закона Ома для участка цепи: сила тока в цепи прямо пропорциональна напряжению на ее участке и обратно пропорциональна сопротивлению этого участка.

Следует иметь в виду, что закон Ома в форме (2.4.3) или (2.4.2) справедлив только для участка цепи, в котором нет источника тока**.

Закон Ома имеет очень простую форму, но доказать экспериментально его справедливость довольно трудно. Дело в том, что разность потенциалов на участке металлического проводника даже при большой силе тока мала, так как мало сопротивление проводника. Электрометр, о котором шла речь в § 1,21, непригоден для измерения столь малых напряжений: его чувствительность слишком мала. Нужен несравненно более чувствительный прибор, например электростатический вольтметр. Применение же обычных приборов для измерения напряжения — вольтметров — основано на использовании закона Ома. Принцип действия вольтметра такой же, как и амперметра: угол поворота стрелки прибора пропорционален силе тока. Сила тока, проходящ,его по вольтметру, согласно закону Ома, определяется напряжением между точками цепи, к которым он подключен. Поэтому, зная сопротивление вольтметра, можно по силе тока определить напряжение. На практике прибор сразу градуируют в единицах напряжения.

Закон Ома является эмпирическим, а не фундаментальным законом природы. Однако он выполняется весьма точно в широких пределах для металлов. В этом случае закон Ома практически справедлив для любых постоянных напряжений, при применении которых проводник не плавится.

Читайте так же:
Сопротивление в сети 220 вольт

Менее широки рамки применения закона Ома для растворов (и расплавов) электролитов и сильно ионизованных газов — плазмы. При больших напряжениях он перестает выполняться.

Сопротивление

Закон Ома определяет новую электрическую характеристику проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении. Сопротивление проводника представляет собой как бы меру противодействия проводника установлению в нем электрического тока. Сопротивление проводника можно определить с помощью закона Ома (2.4.3):

Сопротивление равно отношению разности потенциалов на концах проводника к силе тока в нем.

Единицы сопротивления

В абсолютной системе единиц за единицу сопротивления принимают сопротивление проводника, в котором при напряжении на его концах в одну электростатическую единицу напряжения сила тока равна одной электростатической единице силы тока:

Единицей сопротивления в СИ является Ом. 1 Ом — сопротивление проводника, в котором при напряжении на его концах в 1 В сила тока в нем равна 1 А.

Заметим, что термин «сопротивление» употребляют в двух смыслах:

во-первых, электрическое сопротивление — это величина, определяющая силу тока при заданном напряжении. В этом смысле, например, говорят: лампа накаливания обладает сопротивлением 400 Ом или провод имеет сопротивление 0,5 Ом;

во-вторых, резистором (или сопротивлением) называют устройство, предназначенное для включения в электрическую цепь с целью регулирования, уменьшения или ограничения тока цепи. Таким устройством может служить, например, реостат для регулирования силы тока в цепи путем изменения сопротивления. Резисторы широко применяются в радиоприемниках, телевизорах и других устройствах. Условное обозначение резистора показано на рисунке 2.12.

Удельное сопротивление

Сопротивление зависит от материала проводника и его геометрических размеров. Опыт показывает, что при неизменной температуре сопротивление однородного проводника постоянного оечения прямо пропорционально его длине l и обратно пропорционально площади S поперечного сечения проводника:

Введем коэффициент пропорциональности и запишем последнюю зависимость в виде равенства

Коэффициент пропорциональности ρ численно равен сопротивлению проводника единичной длины и единичного поперечного сечения и называется удельным сопротивлением проводника. Удельное сопротивление зависит от рода вещества и его состояния (в первую очередь, от температуры).

Из формулы (2.4.6) находим:

Отсюда видно, что единицей удельного сопротивления в СИ является

Ом-метр равен удельному сопротивлению проводника площадью поперечного сечения 1 м 2 и длиной 1 м, имеющего сопротивление 1 Ом.

Удельное сопротивление металлов мало. Например, удельное сопротивление обычной технической меди при 20 °С равно 1,72 • 10 -8 Ом • м. Механическая и термическая обработка заметно влияет на электрическое сопротивление металлов. Так, после холодной протяжки удельное сопротивление медной проволоки возрастает до 1,77 • 10 -8 Ом • м.

Еще поразительнее зависимость сопротивления от наличия ничтожных примесей. Тщательная очистка уменьшает удельное сопротивление меди при температуре 20 °С до 1,69 • 10 -8 Ом • м. Но достаточно добавить к меди 1% марганца, чтобы удельное сопротивление ее возросло до 4,8 • 10 -8 Ом • м, т. е. почти в 3 раза! Примерно так же влияют на удельное сопротивление добавки железа, кобальта, иридия и др.

Читайте так же:
Подъемник для авто в гараж своими руками

У сплавов, содержащих примеси в значительном количестве, сопротивление очень велико. Удельное сопротивление этих сплавов в несколько раз больше, чем у каждой из составных частей. Так, константан, состоящий из 60% меди и 40% никеля, имеет удельное сопротивление 4,4 • 10 -7 Ом • м, в то время как у чистой меди оно равно 1,7 • 10 -8 Ом • м, а у никеля — 7,2 • 10 -8 Ом • м***.

«Королем» подобных сплавов можно назвать нихром, удельное сопротивление которого около 10 -6 Ом • м. Недаром он нашел такое широкое применение в нагревательных приборах.

Диэлектрики обладают очень большим, но конечным удельным сопротивлением. Так, удельное сопротивление фарфора 10 13 Ом • м.

В таблице 3 приведены примеры значений удельного сопротивления некоторых веществ.

Закон ома для неоднородного участка цепи

Перед тем, как записать формулу для подобной интерпретации закона, следует разобраться в таких понятиях, как линейные и нелинейные участки цепи.

Если сопротивление никаким образом не зависит от тока и подаваемого напряжения, то с ростом второго параметра, первый будет прямо пропорционально возрастать и наоборот, то есть зависимость можно описать прямой линией. Подобная зависимость относится к линейным участкам цепи и сопротивление имеет аналогичное название.

кривая

Однако вышеизложенный вариант считается идеальным и его можно смоделировать лишь в идеальных условиях, что фактически невозможно, ведь, как минимум, окружающая среда вносит свои коррективы. В этом случае, рост напряжения не будет прямо пропорциональным силе тока и на графике зависимость будет изображаться в виде кривой.

На рисунке изображено два графика, первый из которых описывает линейную зависимость, а второй нелинейную.

Чтобы отчетливо понимать разницу между этими понятиями, рассмотрим принцип работы обычной электрической лампы накаливания. При прохождении тока по нити, температура в значительной степени повышается, что приводит к заметному росту сопротивления. Соответственно, при возрастании напряжения, сила тока будет увеличиваться медленнее, то есть не линейно.

Примечание: в некоторых ситуациях, некоторыми внешними факторами пренебрегают по причине того, что они очень незначительны и в числовом эквиваленте никоим образом не могут повлиять на общую картину. Это значит, что нелинейная зависимость на графике фактически совпадает с линейной.

Учитывая вышесказанное, можно установить следующую зависимость:

I = U/ R = (f1 – f2) + E/ R,

Где f1 и f2 – потенциалы (соответственно f1 – f2 называется разницей потенциалов), E – ЭДС неоднородного участка цепи, а R – суммарное сопротивление на этом же участке.

Нужно упомянуть и о том, что электродвижущая сила не всегда в этом случае будет иметь положительное значение. Если направление тока источника будет аналогичным с направлением в электрической сети, протонов будет больше, чем электронов (положительных и отрицательных частиц), то в этом случае величина E будет иметь значение со знаком «+», в иной ситуации, этот параметр будет со знаком «-».

Читайте так же:
Угловой редуктор для вом на мотоблок

Формулу очень часто представляют в дифференциальном виде, поскольку проводник обычно неоднородный и потребуется разбить его на минимально возможные участки. Ток, проходящий через него, связан с величиной и направлением, поэтому считается скалярной величиной. Всякий раз, когда нужно найти результирующий ток через провод, берут алгебраическую сумму всех отдельных токов. Поскольку это правило действует только для скалярных величин, ток принимают также в качестве скалярной величины. Известно, через сечение проходит ток dI = jdS. Напряженье, на нем равняется Еdl, тогда для провода с постоянным сечением и равной протяженности будет верно соотношение:

Дифференциальная форма

Поэтому, выражение тока в векторном виде будет: j = E.

Важно! В случае металлических проводников с ростом температуры проводимость падает, а для полупроводников — растет. Омовский закон не демонстрирует строгую пропорциональность. Сопротивление большой группы металлов и сплавов исчезает при температуре, близкой к абсолютному нулю, а процесс называется сверхпроводимостью.

Последовательное соединение проводников

Электрические цепи, с которыми приходится иметь дело на практике, обычно состоят не из одного приёмника электрического тока, а из нескольких различных, которые могут быть соединены между собой по-разному. Зная сопротивление каждого и способ их соединения, можно рассчитать общее сопротивление цепи.

На рисунке а изображена цепь последовательного соединения двух электрических ламп, а на рисунке б — схема такого соединения. Если выключать одну лампу, то цепь разомкнётся и другая лампа погаснет.

Последовательное включение лампочек и источников питания

Рис. Последовательное включение лампочек и источников питания

Мы уже знаем, что при последовательном соединении сила тока в любых частях цепи одна и та же, т. е.

А чему равно сопротивление последовательно соединённых проводников?

Соединяя проводники последовательно, мы как бы увеличиваем длину проводника. Поэтому сопротивление цепи становится больше сопротивления одного проводника.

Последовательное соединение проводников

Последовательное соединение проводников

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников (или отдельных участков цепи):

Напряжение на концах отдельных участков цепи рассчитывается на основе закона Ома:

U1 = IR1, U2 = IR2.

Из приведённых равенств видно, что напряжение будет большим на проводнике с наибольшим сопротивлением, так как сила тока везде одинакова.

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

Это равенство вытекает из закона сохранения энергии. Электрическое напряжение на участке цепи измеряется работой электрического тока, совершающейся при прохождении по участку цепи электрического заряда в 1 Кл. Эта работа совершается за счёт энергии электрического поля, и энергия, израсходованная на всём участке цепи, равна сумме энергий, которые расходуются на отдельных проводниках, составляющих участок этой цепи.

Читайте так же:
Плоскогубцы с плоскими губками

Все приведённые закономерности справедливы для любого числа последовательно соединённых проводников.

Пример 1. Два проводника сопротивлением R1 = 2 Ом, R2 = 3 Ом соединены последовательно. Сила тока в цепи I = 1 А. Определить сопротивление цепи, напряжение на каждом проводнике и полное напряжение всего участка цепи.

Запишем условие задачи и решим её.


Расчет сопротивления с помощью закона Ома

Немецкий физик Георг Ом в 1826 г. обнаружил, что отношение напряжения U между концами металлического проводника, являющегося участком электрической цепи, к силе тока I есть величина постоянная:

Эту величину стали называть электрическим сопротивлением. Пользуясь этой формулой, можно экспериментально определить величину неизвестного сопротивления.

Схема измерения напряжения и тока для определения сопротивления участка цепи

Рис. 2. Схема измерения напряжения и тока для определения сопротивления участка цепи.

Для этого амперметром измеряется величина электрического тока через сопротивление, а вольтметром — напряжение на участке цепи. Далее, применяя формулу (1), вычисляется значение R.

Единица измерения названа в честь Георга Ома. Электрическим сопротивлением 1 Ом обладает участок цепи, на котором при силе тока 1 А напряжение равно 1 В:

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Простое объяснение Закона Ома

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Мнемоническое правило

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома карикатура

Напоследок рекомендуем просмотреть полезное видео, в котором простыми словами объясняется Закон Ома и его применение:

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить амперы в киловатты или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector