Um7.ru

Аренда стройтехники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проверка биполярного транзистора мультиметром

Проверка биполярного транзистора мультиметром

Проверка транзистора тестером

Работоспособность радиотехнических схем во многом зависит от правильно произведенной сборки, а также проверочных действий над ее элементами. У многих радиолюбителей самостоятельно собирать схемы часто возникает вопрос: как проверить транзистор мультиметром, особенно когда он уже установлен и идет настройка работоспособности собранного устройства? Для того чтобы настраивать радиотехнические схемы, надо понимать, что такое транзистор и как он работает. Рассмотрим вопросы тестирования схемы и проверки транзисторов.

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Транзистор с управляющим переходом

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Устройство транзистора

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Транзистор открыт

↑ Корпус и компоновка


Ну и вот так это выглядит в работе:

Читайте так же:
Подключение выключателя света с одной лампочкой

Полупроводники. Транзистор

На этом занятии Школы начинающего радиолюбителя мы продолжим изучение полупроводников. На прошлом занятии мы рассматривали диоды, а на этом занятии рассмотрим более сложный полупроводниковый элемент – транзисторы.

Транзистор является более сложной полупроводниковой структурой, чем диод. Он состоит из трех слоев кремния (бывают еще и германиевые транзисторы) с разной проводимостью. Это могут быть структуры типа n-p-n или p-n-p. Функционирование транзисторов, также как и диодов, основывается на свойствах p-n переходов.

Центральный, или средний слой, называют базой (Б), а два других соответственно – эмиттер (Э) и коллектор (К). Следует отметить, что существенной разницы между двумя типами транзисторов нет, и многие схемы могут быть собраны с тем или другим типом, при соблюдении соответствующей полярности источника питания. На рисунке ниже приведено схемное изображение транзисторов, транзистор p-n-p отличается от транзистора n-p-n направлением стрелки эмиттера:

Выделяют два основных типа транзисторов : биполярные и униполярные, которые различаются по конструктивным особенностям. В рамках каждого типа существует много разновидностей. Главное различие этих двух типов транзисторов заключается в том, что управление процессами, происходящими в ходе работы прибора, в биполярном транзисторе осуществляется входным током, а в униполярном транзисторе – входным напряжением.

Биполярные транзисторы, как уже говорилось выше, представляют собой слоенный пирог из трех слоев. В упрощенном виде транзистор можно представить как два встречно включенных диодов:

(при этом, следует отметить, что переход база – эмиттер представляет собой обычный стабилитрон, напряжение стабилизации которого 7…10 вольт). Исправность транзистора можно проверить также как и исправность диода, обычным омметром, измеряя сопротивление между его выводами. Переходы, аналогичные имеющимся в диоде, существуют в транзисторе между базой и коллектором, а также между базой и эмиттером. На практике такой способ для проверки транзисторов используется очень часто. Если омметр подключить между коллекторным и эмиттерным выводами, прибор покажет разрыв цепи (при исправном транзисторе), что естественно так как диоды включены встречно. А это означает, что при любой полярности приложенного напряжения один из диодов включен в прямом направлении, а второй в обратном, поэтому ток проходить не будет.

Объединение двух пар переходов приводит к проявлению чрезвычайно интересного свойства, именуемого транзисторным эффектом. Если к транзистору между коллектором и эмиттером приложить напряжение, тока практически не будет (о чем и говорилось чуть выше). Если же произвести подключение в соответствии со схемой (как на рисунке ниже), где на базу через ограничивающее сопротивление (чтобы не повредить транзистор) подается напряжение, то через коллектор будет проходить ток более сильный чем ток базы. При повышении тока базы ток коллектора тоже будет увеличиваться.

Читайте так же:
Уайт спирит для обезжиривания металла

С помощью измерительного прибора можно определить соотношение токов базы, коллектора и эмиттера. Это можно проверить простым способом. Если сохранить напряжение питания, к примеру на уровне 4,5 В, изменив значение сопротивления в цепи базы с R до R/2, ток базы удвоится, пропорционально увеличится и ток коллектора, к примеру:

U=4,5 В; сопротивление =RU=4,5 В; сопротивление =R/2
Iб=1 мАIб=2 мА
Iэ=100 мАIэ=200 мА
Iк=99 мАIк=198 мА

Следовательно, при любом напряжение на сопротивление R, ток коллектора будет в 99 раз больше тока базы, то есть транзистор имеет коэффициент усиления по току равный 99. Другими словами, транзистор усиливает ток базы в 99 раз. Этот коэффициент обозначают буквой ?. Коэффициент усиления равен отношению тока коллектора к току базы :

? = Iк/Iб

На базу транзистора можно подать и переменное напряжение. Но, необходимо, чтобы транзистор работал в линейном режиме . Для нормального функционирования в линейном режиме транзистору следует подать на базу постоянное напряжение смещения и подвести переменное напряжение, которое он будет усиливать. Таким образом транзисторы усиливают слабые напряжения, поступающие к примеру с микрофона, до уровня, который способен привести в действие громкоговоритель. Если коэффициент усиления не достаточен, можно использовать несколько транзисторов или их последовательных каскадов. Чтобы при соединении каскадов не нарушать режимов работы каждого из них по постоянному току ( при которых обеспечивается линейность), используют разделительные конденсаторы. Биполярные транзисторы обладают электрическими характеристиками, обеспечивающими им определенные преимущества по сравнению с другими усилительными компонентами.

Как мы уже знаем, существуют еще (кроме биполярных) и униполярные транзисторы . Коротко рассмотрим два их них – полевые и однопереходные транзисторы. Как и биполярные они бывают двух типов и имеют по три вывода:

Электродами полевых транзисторов являются: затвор – З, сток – С, соответствующий коллектору и исток – И, отождествляемый с эмиттером. Полевые транзисторы с n- и p- каналом различаются по направлению стрелки затвора. Однопереходные транзисторы, которые иногда называют двухбазовыми диодами, в основном используются в схемах генераторов импульсных периодических сигналов.

Имеется три фундаментальных схемы включения транзисторов в усилительном каскаде:

? с общим эмиттером (а)

? с общим коллектором (б)

? с общей базой (в)

Биполярный транзистор, включенный по схеме с общим эмиттером , в зависимости от выходного сопротивления источника питания R1 и сопротивления нагрузки Rн усиливает входной сигнал и по напряжению, и по току. Коэффициент усиления биполярного транзистора обозначается как h21э (читается: аш-два-один-э, где э – схема с общим эмиттером), и у каждого транзистора он разный. Величина коэффициента h21э (его полное название – статический коэффициент передачи тока базы h21э) зависит только от толщины базы транзистора (ее изменить нельзя) и от напряжения между коллектором и эмиттером, поэтому при небольшом напряжении (менее 20 В) его коэффициент передачи тока при любом токе коллектора практически неизменен и незначительно увеличивается при увеличении напряжения на коллекторе.

Читайте так же:
Перила из профильной трубы своими руками фото

Коэффициент усиления по току – Кус.i и коэффициент усиления по напряжению – Кус.u биполярного транзистора, включенного по схеме с общим эмиттером, зависит от отношения сопротивления нагрузки (на схеме обозначено как Rн) и источника сигнала (на схеме обозначено как R1). Если сопротивление источника сигнала в h21э раза меньше сопротивления нагрузки, то коэффициент усиления по напряжению чуть меньше единицы (0,95…0,99), а коэффициент усиления по току равен h21э. Когда сопротивление источника сигнала более чем в h21э раза меньше сопротивления нагрузки, то коэффициент усиления по току остается неизменным (равным h21э), а коэффициент усиления по напряжению уменьшается. Если же, наоборот, входное сопротивление уменьшить, то коэффициент усиления по напряжению становится больше единицы, а коэффициент усиления по току, при ограничении протекающего через переход база-эмиттер транзистора тока, не изменяется. Схема с общим эмиттером – единственная схема включения биполярного транзистора, которая требует ограничения входного (управляющего) тока. Можно сделать несколько выводов: – базовый ток транзистора нужно ограничивать, иначе сгорит или транзистор, или управляющая им схема; – с помощью транзистора, включенного по схеме ОЭ, очень легко управлять высоковольтной нагрузкой низковольтным источником сигнала. Через базовый, а следовательно и коллекторный переходы протекает значительный ток при напряжении база-эмиттер всего 0,8…1,5 В. Если амплитуда (напряжение) больше этого значения – нужно поставить между базой транзистора и выходом управляющей схемы токоограничивающий резистор (R1). Рассчитать его сопротивление можно по формулам:

Ir1=Irн/h21э R1=Uупр/Ir1 где:

Irн – ток через нагрузку, А; Uупр – напряжение источника сигнала, В; R1 – сопротивление резистора, Ом.

Еще одна особенность схемы с ОЭ – падение напряжения на переходе коллектор-эмиттер транзистора можно практически уменьшить до нуля. Но для этого надо значительно увеличивать базовый ток, что не очень выгодно. Поэтому такой режим работы транзисторов используют только в импульсных, цифровых схемах.

Транзистор, работающий в схеме усилителя аналогового сигнала , должен обеспечивать примерно одинаковое усиление сигналов с разной амплитудой относительно некоторого “среднего” напряжения. Для этого его нужно немножко “приоткрыть”, постаравшись не “переборщить”. Как видно из рисунка ниже (левый):

ток коллектора и падение напряжения на транзисторе при плавном увеличении тока базы вначале изменяются почти линейно, и лишь потом, с наступлением насыщения транзистора, прижимаются к осям графика. Нас интересуют только прямые части линий (до насыщения) – очевидно, что они символизируют линейное усиление сигнала, то есть, при изменении управляющего тока в несколько раз во столько же раз изменится и ток коллектора (напряжение в нагрузке).

Читайте так же:
Подключение датчика света через выключатель

Форма аналогового сигнала показана на рисунке выше (справа) . Как видно из графика, амплитуда сигнала постоянно пульсирует относительно некоего среднего напряжения Uср, причем она может как увеличиваться, так и уменьшаться. Но биполярный транзистор реагирует только на увеличение входного напряжения (вернее тока). Вывод: нужно сделать так, чтобы транзистор даже при минимальной амплитуде входного сигнала был немножко приоткрыт. При средней амплитуде Uср он откроется чуть сильнее, а при максимальной Umax откроется максимально. Но при этом он не должен входить в режим насыщения (см.рис. выше) – в этом режиме выходной ток перестает линейно зависеть от входного, в следствии чего происходит сильное искажение сигнала.

Обратимся снова к форме аналогового сигнала. Так как и максимальная и минимальная амплитуды входного сигнала относительно средней примерно одинаковы по величине (и противоположны по знаку), то нам нужно подать на базу транзистора такой постоянный ток (ток смещения – Iсм), чтобы при “среднем” напряжении на входе транзистор был открыт ровно наполовину. Тогда при уменьшении входного тока транзистор будет закрываться и ток коллектора будет уменьшатся, а при увеличении входного тока он будет открываться еще сильнее.

Особенности конструкции, хранения и монтажа

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. [attention type=green]Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток. [/attention]При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых транзисторов без выпаивания их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором (рисунок №3, а) и при соединении базы с эмиттером (рисунок №3,б).

Читайте так же:
Правила работы с мегаомметром в электроустановках

Рисунок №3 – Иллюстрация проверки транзисторов

При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч Ом.
Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра.
Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод.
Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора (на рисунке № 4 показано, как измеряют прямое и обратное сопротивления каждого из переходов транзистора).

Рисунок №4 – Проверка транзистора с помощью омметра

У исправного транзистора прямые сопротивления переходов составляют 30—50 Ом, а обратные — 0,5—2 МОм. При значительных отклонениях от этих величин транзистор можно считать неисправным.
При проверке ВЧ транзисторов напряжение батареи омметра не должно превышать 1,5 В, а для более тщательной проверки транзисторов используются спе¬циальные приборы.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Исправность p-канала

Проверка исправности p-канального элемента производится аналогичным методом, что и для n-канального вида. Отличие состоит в том, что к минусу мультиметра необходимо подключать красный щуп, а к плюсу прибора следует произвести подключение черного провода.

Таким образом, можно сделать следующие выводы относительно полевых транзисторных компонентов и проверочных процедур:

  • Полевые элементы разновидности МОСФЕТ широко применяются в радиоэлектронике, технике и прочих сферах, связанных с практической электроникой;
  • Проверка работоспособности транзисторных элементов удобнее всего и качественнее осуществляется с помощью мультиметра — при следовании определенной пошаговой методике;
  • Проверка p-канального и n-канального транзисторного компонента осуществляется одинаковыми методами, но при этом необходимо сменить полярность подключения проводов мультиметра на обратную.

Полевые транзисторные компоненты очень популярны в различных технических и электронных устройствах. Но для качественной и долговечной работы требуется периодическая проверка мосфет транзисторов с применением мультиметра. Следуя всем вышеописанным методам, можно сэкономить значительные финансовые затраты, связанные с заменой и ремонтом полевых транзисторов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector