Um7.ru

Аренда стройтехники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Правильная шестиугольная призма; свойства, признаки и формулы

Правильная шестиугольная призма — свойства, признаки и формулы

Одним из фундаментальных объектов в геометрии является многоугольник. Если рассматривать фигуру в трёхмерном пространстве, то с помощью двух таких геометрических тел с шестью углами можно построит правильную шестиугольную призму. При этом боковые грани обязательно будут прямоугольниками. По своему виду такая фигура напоминает пчелиные соты, поэтому она и интересна для изучения архитекторам и математикам.

Правильная шестиугольная призма - свойства, признаки и формулы

Свойства шестигранника

Правильную шестиугольную призму принято обозначать большими латинскими буквами: ABCDEFA1B1C1D1E1F1. Длину основания подписывают маленьким символом a, а длину боковой стороны h. К характеристикам фигуры относят площади основания, боковые грани, полную поверхность, объём многогранника. Всего у геометрического тела 8 граней, 18 рёбер и 12 вершин.

Для успешного вычисления различных параметров фигуры понадобится знать следующие формулы:

Шестиугольная призма

  1. Площадь основания. Так как в основе тела лежат правильные шестиугольники, то, используя их свойства, можно получить формулу: S = (3 * a 2 * √ 3) / 2, где: а — сторона многоугольника.
  2. Площадь полной поверхности. Определяется она из равенства: Sb = 6 * a * h + 2 * (3 * a 2 * √ 3) / 2. Из-за того, что площадь плоскости можно получить путём сложения сторон призмы и двух поверхностей её основания, а грань — прямоугольник (S прямоугольника = a * h), то указанная формула будет верной.
  3. Объём. Он равняется произведению площади основания на высоту. Роль последней может играть ребро любой стороны, например, BB1. Учитывая сказанное, формулу можно записать так: V = S * BB 1 = ((3 √ 3) / 2) * (a 2 * h).

Если рассмотреть правильный шестиугольник, лежащий в основе призмы ABCDEF, и провести отрезки AB, CD, EF, у них будет общая точка пересечения. Для удобства обозначить её можно буквой O. Так как, в соответствии со свойствами, треугольники AOB, BOC, COD, DOE, EOF, FOA будут правильными, можно составить равенство: AO = OD = EO = OB = CO = OF = a .

Шестигранная призма

Через точку М можно провести прямую AC и CF. Образованный ранее треугольник AEO будет равнобедренным. В нём отрезок AO равняется по величине OE. Значит, угол EOA будет развёрнутым и равняться 120 градусам. Используя свойства равнобедренного треугольника, можно записать: AE = a * √2 * (1 — cos EOA). То есть: AE = AC = √3 * a.

По аналогии можно найти и стороны: EA1, FB1, AC1, BD1, CE1, DF1. Так как AA1 = h, а из свойств правильной призмы следует, что угол EAA1 — прямой, длины сторон будут равны между собой, и их можно найти, используя формулу: √(AA1 2 + AE 2 )= √(h 2 + 3 * a) = 2 * a. Грань EB1 = FC1 = AD1 = BE1 = CF1 = DA1 = √(BB1 2 + BE 2 ) = √(h 2 + 4 *a) = √5 *a. Сторона FE1 = √(FE 2 + EE 2 ) = √(h 2 + a 2 ) = √2 *a.

Длины диагоналей призмы равняются сумме квадратов высоты и длины основания под корнем. Это легко доказать, если принять, что ЕЕ1 = h, а FE = a. Треугольник FEE1 прямоугольный, значит, FE = √(h 2 + a 2 ), что и следовало доказать.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Построение правильных многоугольников»

На этом уроке мы рассмотрим способы построения некоторых правильных многоугольников с помощью циркуля и линейки. А также изобразим правильный многоугольник графически.

Для начала давайте вспомним определение правильного многоугольника. Итак, правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.

Для выполнения построений мы используем циркуль и линейку.

Циркуль позволяет:

– построить дугу окружности,

– отложить на прямой отрезок, равный данному.

Линейка позволяет:

– построить прямую линию,

– построить отрезок, соединяющий две точки,

– найти точку пересечения двух прямых.

Ранее мы с вами уже рассматривали построения правильного треугольника и четырехугольника, т.е. квадрата.

Давайте рассмотрим, каким образом можно с помощью циркуля и линейки построить правильный треугольник и правильный четырехугольник, вписанные в окружность.

Задача 1. Вписать в заданную окружность правильный треугольник

Построение. Пусть задана окружность с центром О. Проведем произвольный диаметр BD окружности. Построим прямую l, являющуюся серединным перпендикуляром к радиусу OD. Середину радиуса ОD обозначим точкой К. Отметим точки А и C – пересечения прямой l с окружностью. И построим отрезки BA и BC. Треугольник ABC – правильный.

Читайте так же:
Самодельные точечные сварочные аппараты

Доказательство.

Значит, – равносторонний – правильный.

Второй способ построения.

Пусть задана окружность с центром О. Раствором циркуля, равным радиусу, последовательно от одной точки окружности делаем на ней засечки, пока последняя засечка не совпадет с взятой первоначально точкой. Соединив полученные точки через одну, получим правильный треугольник.

Задача 2. Вписать в заданную окружность правильный четырехугольник.

Построение. Пусть задана окружность с центром О. Построим диаметр AC. Затем построим диаметр BD перпендикулярный диаметру AC. Точки А, C и B, D – точки пересечения диаметров с окружностью. И построим отрезки АB, BC, CD и АD. Четырехугольник ABCD – правильный.

Доказательство.

Т.к. , , то – параллелограмм.

Т.к. ,то – прямоугольник.

Значит, – правильный четырехугольник.

Теперь давайте рассмотрим построения правильных n-угольников при n>4. Обычно для построения таких n-угольников используется окружность, описанная около многоугольника.

Задача 3. Построить правильный шестиугольник, сторона которого равна данному отрезку.

Построение. Так как в правильном шестиугольнике сторона а равна радиусу, то достаточно последовательно отложить от одной точки окружности 6 радиусов-хорд. Пусть МN – заданный отрезок. Построим окружность с произвольным центром О и радиуса MN. Отметим на этой окружности произвольную точку А. Затем, не меняя раствора циркуля, последовательно от этой точки А будем делать на окружности засечки, пока последняя засечка не совпадет с взятой первоначально точкой А. Отметим точки B, C, D, Е и F. Теперь соединим последовательно построенные точки отрезками. Получим искомый правильный шестиугольник ABCD.

Доказательство.

Равные хорды стягивают равные дуги.

Все углы шестиугольника будут равны, так как опираются на дуги, состоящие из четырех равных меньших дуг.

Для построения правильных многоугольников часто используется следующая задача: дан правильный n-угольник. Построить правильный 2n-угольник.

Задача 4. Дан правильный шестиугольник. Построить правильный двенадцатиугольник.

Пусть ABCDEF – данный правильный шестиугольник. Опишем около него окружность.

1. – точка пересечения биссектрис и .

5. – правильный двенадцатиугольник.

Применяя указанный способ, можно с помощью циркуля и линейки построить целый ряд правильных многоугольников, если построен один из них. Например, построив правильный четырехугольник, т.е. квадрат, и пользуясь задачей 4, можно построить правильный восьмиугольник, затем правильный шестнадцати-угольник и вообще правильный 2 k угольник, где k – любое целое число, большее 2.

Замечание. Рассмотренные примеры показывают, что многие правильные многоугольники могут быть построены с помощью циркуля и линейки. Но важно заметить, что не все правильные многоугольники могут быть построены таким образом.

С давних времен построению правильных многоугольников математики уделяли большое внимание. Древние греки умели строить правильные треугольники, четырехугольники, пятиугольники. А также многоугольники, получаемые удвоением их сторон, шестиугольники, восьмиугольники, десятиугольники и т.д. Далее дело зашло в тупик. И только 2000 лет спустя великий немецкий математик 17 века Карл Гаусс, которого называли «королем математики», решил эту математическую проблему. Будучи девятнадцати летним юношей, он доказал, что можно построить правильный семнадцати-угольник, а вот семиугольник, девятиугольник, одиннадцатиугольник, тринадцати-угольник циркулем и линейкой построить нельзя. Задача о построении правильного семнадцати-угольника была самым первым его научным открытием.

Подведем итоги урока.

Сегодня мы рассмотрели способы построения некоторых правильных многоугольников с помощью циркуля и линейки. Научились строить правильные треугольник и четырехугольник, вписанные в окружность. А также выполнили задачу на построение правильного многоугольника по заданному отрезку, и задачу на построение правильного 2n-угольника по заданному n-угольнику.

Правильные многоугольники

Наглядная геометрия 9 класс. Опорный конспект 4. Правильные многоугольники

Правильный многоугольник — это такой многоугольник, у которого все стороны и все углы равны. Равносторонний треугольник и квадрат — правильные многоугольники. Если разделить окружность на п равных частей и соединить соседние точки отрезками, то получим правильный многоугольник. Вокруг всякого правильного многоугольника можно описать окружность, в него также можно вписать окружность, и центры этих окружностей совпадают.

Читайте так же:
Собрать паяльную станцию своими руками

Мы научимся строить правильный треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник при помощи циркуля и линейки и выведем формулы, связывающие радиусы вписанной и описанной окружностей с длиной стороны правильного многоугольника.

Если число сторон вписанного правильного многоугольника увеличивать, то его периметр будет стремиться к длине окружности, а площадь — к площади круга. Отсюда можно получить формулы длины окружности и площади круга: С = 2πR и S = πR 2 .

Вы знаете, что углы измеряются в градусах. Градус, как известно, равен 1/180 части развернутого угла. Мы познакомимся еще с одной очень важной единицей измерения углов, которая связана с окружностью, — 1 радианом. 1 рад = 57°.

ТАБЛИЦА «Правильные многоугольники»

1. Правильный многоугольник. Теорема об описанной и вписанной окружностях.

Правильным называется многоугольник, у которого все стороны и углы равны.

Теорема. Вокруг всякого правильного многоугольника можно описать окружность. Во всякий правильный многоугольник можно вписать окружность. Центры этих окружностей совпадают.

Доказательство. Проведем биссектрисы двух углов правильного многоугольника. Получим равнобедренный треугольник (углы при основании равны как половины равных углов). Соединив точку пересечения биссектрис с третьей вершиной многоугольника, получим треугольник, равный 1-му (по двум сторонам и углу между ними). Продолжая соединять эту точку с остальными вершинами, получим множество равных равнобедренных треугольников. Тогда полученная точка равноудалена от всех вершин правильного многоугольника. Значит, она — центр описанной окружности. Так как высоты этих треугольников, опущенные на их основания, равны, то данная точка равноудалена и от сторон правильного многоугольника. Значит, она — центр вписанной окружности.

2. Выражение стороны а через R и r для правильного n-угольника.

Соединим центр правильного многоугольника с двумя соседними вершинами. Получим равнобедренный треугольник с углом при вершине, равным 360°/n. Половина его равна 180°/n, где n — число сторон. Из прямоугольного треугольника находим:

Пчелиные соты, имеющие форму призмы с основанием в виде того самого гексагона, производят впечатление настоящего чуда с точки зрения инженерии. В том числе потому что:

  • находятся в равновесии в плане влияния магнитных полей планеты;
  • каждая ячейка чуть отклонена по горизонтали, для исключения вытекания мёда;
  • стенки из воска имеют строго определенную толщину.

Как столь сложную конструкцию выстраивают без расчетов и чертежей обычные насекомые? Тем более, что это — огромный коллектив, который работает одновременно, умудряясь как-то координировать свои действия. И в результате делает соты абсолютно одинаковыми.

По мнению Паппа Александрийского, философа из Древней Греции, пчелам свойственно «геометрическое предвидение». Данное им Господом. В 19-м столетии в «Монографии о пчёлах Англии» энтомолог У. Кёрби называл пчёл «математиками от Бога».

Ч. Дарвин был в этом совсем не уверен. Потому придумывал разнообразные эксперименты, призванные определить, строят ли пчёлы столь идеальные по геометрии соты, на основе врожденных или приобретенных способностей.

Почему шестиугольник?

Для геометрии это — простой вопрос. Когда нужно сложить ряд ячеек с одинаковыми размерами и формой так, чтобы заполнить ими определенную плоскость как можно полнее, подходят лишь 3 типа «правильных» (имеющих равные стороны и углы) фигур. То есть, речь идет о равносторонних:

  • треугольниках;
  • квадратах;
  • гексагонах.

В «личном» же первенстве данных вариантов, при равной площади, шестиугольникам потребуется наименьшая общая длина перегородок. Отсюда у пчелиного предпочтения гексагонов наблюдается непробиваемая логика. Чем меньше длина — тем меньше и воска, и труда.

Именно Дарвин первым выявил эту закономерность. А также был уверен, что благодаря естественному отбору, пчёлы получили инстинкты для создания ячеек наиболее рациональной формы. Однако современная наука, признавая за пчёлами особые способности в измерении толщины стенок или углов, обращает внимание на распространенность шестиугольников в природе вообще, а не только в ульях.

Пузыри на воде

Стоит подуть на пузырьки воздуха на водной поверхности, согнав их близко друг к другу, как они приобретают шестиугольную форму. И чем плотнее пузыри сгруппированы, тем явнее становится их шестиугольность.

Читайте так же:
Осциллограф для смартфона андроид

А ведь при этом нет воздействия каких-либо организмов, работы над склейкой этих пузырей, подобной строительству пчел своих сот. Получившийся рисунок обязан своим появлением только физическим закономерностям.

Причина такой формы пузырей и образования именно таких «развилок» между мыльными стенками в том, что природу не менее пчёл заботит экономия сил и средств. Пузыри из мыльной пленки состоят из воды и слоя мыльных молекул. Поверхность жидкости под воздействием поверхностного натяжения сжимается так, чтобы занимать как можно меньшую площадь. Ровно как в случае с каплями дождя, принимающими при падении форму, стремящуюся к сферической. Потому что сфера отличается наименьшей площадью поверхности среди всех фигур с тем же объёмом. И на восковых листках водяные капли сжимаются до маленьких бусинок согласно все тому же закону.

То есть, именно поверхностным натяжением обусловлен узор, образуемый пузырями или пеной. Здесь прослеживается все то же стремление к конструкции, обеспечивающей минимальность общего поверхностного натяжения. А следовательно, мыльная мембрана обязана иметь и минимальную площадь. Причем стенки пузырей должны иметь конфигурацию, которая обязана обладать и механической прочностью. Такой, чтобы натяжение на перекрещивающихся направлениях имело идеальную сбалансированность. Точно так же, как обязателен баланс при возведении здания соборного типа.

Однако ошибочно принимать соты за этакое застывшее множество восковых пузырей. Потому что тогда будет трудно дать объяснение, каким образом подобные 6-угольные ячейки бумажные ячейки строят осы, создающие свои гнёзда из комков жёваной древесины. Во-первых, поверхностному натяжению здесь особая роль явно не принадлежит. А во-вторых, очевидно, что различные виды ос обладают разными врожденными инстинктами в плане «архитектурных школ», которые различаются весьма значительно.

Морской мир

У черепахи в центре панциря кожа также обладает 6-угольной формой. Именно потому что так наиболее эффективно можно покрыть плоскую поверхность. Для изогнутой же гексагоны не столь хороши. А панцирь черепах является именно таким. Отчего в нём присутствует кольцо и 5-угольников и вовсе неправильных фигур.

Вымершие уже кораллы под названием Cyathophyllum hexagonum даже имя своё получили благодаря 6-угольной форме. И такая группа водорослей, как диатомовые тоже обладают формой 6-угольника. Однако, сложно найти биологическую структуру, которая отличается более явной «гексагонностью», как глаз стрекозы.

Стрекоза и гексагон

Стрекозиный глаз включает порядка 30 тысяч 6-угольников, которые ещё и переплетены в умопомрачительной структуре. По сути, этот оптический аппарат, считающийся одним из лучших среди животных, состоит из гексагонов. При этом, лишь 3 из 6-угольников соприкасаются в любой вершине или определенной точке пересечения.

Напомним, что речь идет только о двух больших сложных глазах, а не о дополнительных трёх — с обычными линзами. Причём множество насекомых имеют глаза 6-угольной формы. И абсолютно всегда соблюдается тенденция, что только 3 стенки могут встретиться в одной вершине. А если отойти от мира биологии, обнаруживается, что такому же правилу подчинено всё, где встречаются гексагоны.

Вулканы

Извержения некоторых вулканов (в первую очередь — базальтовых пород) порождают изумительные образования 6-угольной формы. Озадачивая людей в течении столетий, такие гексагоны встречаются по всей планете: и примерно 6-угольные, и совершенно 6-угольные.

Наиболее известны два из них:

  1. «Башня Дьявола» в американском штате Вайоминг. Монолит 1556 м в высоту, которому от 195-и до 225-и млн. лет. Это магма, застывшая в форме 6-угольных колонн.
  2. «Дорога Гигантов» в Сев. Ирландии. Обширное плато из лавы, насчитывающее 40 тыс. 6-гранных столбов. Возраст — порядка 50-60 млн. лет.

Человечество уже разобралось, каким образом происходит их образование. Извергаемая вулканом горячая лава, на открытой поверхности остывает и сжимается. А при сжатии растёт давление, которое в итоге даёт образование трещин.Создаваемый максимальным напряжением угол составляет 120 o , соответствующий внутренним углам в гексагоне. Конечно, вся лава не остывает с одинаковой скоростью, поэтому фигуры получаются не столь совершенными. Но все равно удивительно, как много углов получаются близки к значению 120 градусов.

Читайте так же:
Мини сушилка для древесины
Снег кружится…

… летает и тает. Но, до того, как растаять, успевает подарить нам чудное зрелище — снежинку. При уникальности каждой из них абсолютно все обладают шестью сторонами или точками. В этой форме снежинок отражается её внутренняя структура. Именно благодаря гексагональной структуре молекулы воды группируются максимально эффективно.

При увеличении масштаба снежинки становится видно, что они — не исключение среди кристаллов. Есть ещё т.н. семейство гексагональных кристаллов состоящих либо просто из 6-угольников, либо из структур такого типа. При еще большем увеличении масштаба обнаруживается еще один вид гексагона. Каждый студент химического факультета знает, что в основе органической химии лежат именно шестиугольные формы. Соединение 6-и атомов углерода имеет угол всё в те же 120 o . Этот идеальный гексагон носит название «бензольного кольца».

Самый крупный гексагон

На макроуровне одним из наиболее известных 6-угольников считается гигантское облако гексагональной формы на северном полюсе планеты Сатурн. Длина его составляет примерно 14,5 тыс. км, что больше диаметра Земли. А каждая сторона Гексагона Сатурна (так его астрономы и называют) достигает в длину 13,8 тыс. км.

Этот гексагон образуют газы, слой которых, предположительно достигает толщины в 300 км и движется со скоростью 320 км/ч. Облако вращается — 1 оборот за 10 ч. 39 мин. Не в пример остальным облакам на Сатурне, это не перемещается, постоянно находясь на одном месте.

Над южным полюсом планеты ничего подобного нет. Но есть огромная воронка в атмосфере, ровно такая, как в центре Гексагона Сатурна.

На клеточном уровне

Вышеописанные правила работают и в узорах, присущих живым организмам. Так, из групп 6-угольных ячеек состоит не только фасеточный глаз мухи, но и в каждой такой ячейке обнаруживаются гроздья из 4-х светочувствительных клеток, напоминающие мыльный пузырь.

Для строительства подобных гексагонов не требуется сложных генетических инструкций. Физические законы всё сделают сами. Пористую совокупность ячеек представляет собой экзоскелет такого животного, как морской ёж Cidaris rugosa. На этой защитной раковине размещены опасные на вид колючки из минерала, из которого состоят мел и мрамор. Благодаря открытой решетчатой структуре этот материал отличается прочностью и малой массой, подобно пенометаллу, применяемому в авиапромышленности.

Экзоскелеты некоторых видов морских губок образуют минеральные стержни, которые соединены подобно «паутинке» с детских площадок. Также они очень напоминают по форме пузыри в мыльной пене. Без малейшего допущения «случайного совпадения», потому что такая архитектура диктуется поверхностным натяжением.

Этот процесс, называемый биоминерализацией, даёт особенно впечатляющие результаты и у других морских животных, например — диатомей и лучевиков. Ряд из них обладают аккуратными экзоскелетами из ячеек в форме гексагонов, этакими минеральными «морскими сотами». Естествоиспытатель, философ и художник 19-го столетия Э. Геккель, увидев их в микроскопе, использовал эти формы, как главное украшение своей серии рисунков «Красота форм в природе», оказавшей сильное влияние на многих художников до нашего времени.

Геккель считал такие конструкции доказательством истинной креативности природы, её предпочтением таких узоров и порядков, которое встроено в основу естественных законов. Упорядоченность остается неудержимым импульсом живой и неживой природы. Именно поэтому мы и выбрали для нашей компании гордое имя «Гексагон». Как символ:

а) Итак, рассмотрим правильный шестиугольник H со стороной n, нарисованный на треугольной сетке. Посчитаем, сколько в нем содержится правильных шестиугольников со сторонами, параллельными сторонам H.

Ясно, что шестиугольник со стороной n всего один — он совпадает с H. Шестиугольников со стороной (n-1) уже 7 штук: у одного центр совпадает с центром H, а остальные получаются из него сдвигами к каждой из вершин H. Если продолжить уменьшать размер шестиугольника, то после аккуратного разбора случаев можно получить, что со стороной (n-2) будет 19 шестиугольников, а со стороной (n-3) — уже 37. Как возникают эти числа и что их объединяет?

Читайте так же:
Фото кованых вешалок на стену

Зафиксируем натуральное (k<n) и посмотрим, какие положения может занимать, например, левая нижняя вершина шестиугольника со стороной k. Несложно понять, что она может находиться только внутри шестиугольника со стороной (n-k), «приклеенного» к левой нижней вершине шестиугольника H (рис. 2).

Рис. 2.

Поскольку у каждого шестиугольника ровно одна левая нижняя вершина, то получается, что всего таких шестиугольников будет столько же, сколько узлов сетки попадает внутрь и на стороны шестиугольника со стороной (n-k).

Рис. 3.

Считать число точек внутри шестиугольника с данной стороной m можно разными способами. Мы последуем простому и изящному рассуждению, приведенному Мартином Гарднером в книге «Путешествие во времени». На рис. 3 все точки разбиты на четыре группы: те, что находятся в трех параллелограммах, плюс одна центральная точка. В одном параллелограмме (m(m-1)) точек, поэтому всего в шестиугольнике со стороной m будет (p_m=3m(m-1)+1=3m^2-3m+1) точек.

Нам, чтобы теперь решить задачу, нужно просуммировать эти выражения по всем m от 1 до n, то есть найти сумму (P=sumlimits_^n p_m). Удобнее всего это сделать, перегруппировав слагаемые так, чтобы отдельно сложить квадраты, отдельно — первые степени и отдельно — единицы:

Теперь осталось воспользоваться известными формулами для суммы чисел от 1 до n и для суммы их квадратов (см. задачу Суммы квадратов, суммы кубов. ):

После упрощения получится, что это выражение равно (n^3).

б) Надо заметить, что все точки, расположенные на периметре правильного шестиугольника со стороной m (где (minmathbb), (mle n)) определяют ровно m правильных шестиугольников (рис. 4). Верно и обратное: если на нашей сетке построен правильный шестиугольник, то его вершины обязательно будут лежать на сторонах другого шестиугольника, которые при этом параллельны сторонам H.

Рис. 4.

С учетом результатов пункта а) это означает, что надо найти сумму (N=sumlimits_^(p_cdot m)). Или, в полном виде:

Упрощать это выражение можно по-разному. Вот один из путей. Сначала выделим в отдельное слагаемое сумму, которую мы уже нашли в пункте а):

Сумма в первых скобках равна, как мы знаем, (n^3), и с учетом множителя n получится (n^4).

Разберемся со второй суммой. Компактно она записывается в виде (sumlimits_^ p_mcdot (m-1)). Но каждое слагаемое ( p_mcdot (m-1)=(3m^2-3m+1)(m-1)=3m^3-6m^2+4m-1) — это многочлен, а значит с этой суммой можно поступить так же, как мы делали в пункте а) — перегруппировать ее так, чтобы каждая степень складывалась отдельно:

Опять воспользуемся известными формулами для этих сумм и получим:

После упрощения останется следующее: (frac34n^4-frac12n^3-frac14n^2).

Поэтому искомое число всех правильных шестиугольников равно:

3 комментария

Даша :

Як разбить чатырох угольник так, чтоб палучился трохвугольник и чатырохвугольник

Алексей Шевчук :

Даша, например, можно провести отрезок из вершины в середину противоположной стороны.

Александр Кель :

Некоторые комментарии прошлых лет к этой статье:

Сергей
19 февраля 2018
Просто огромное спасибо. Хоть что-то начал понимать.

Александр (админ)
19 февраля 2018
Просто огромное пожалуйста. Очень приятно слышать от вас такие слова.

Вероника
18 марта 2020
Спасибо большое, а то на карантине приходится самим разбирать темы!

Александр (админ)
18 марта 2020
Отлично, Вероника! Круто, что ты сама пытаешься разобраться с математикой! Этот навык ой как пригодится в будущем. Я всегда говорю: «В жизни репетитора и учителя рядом не будет». И я рад, что наш скромный сайт в этом помогает. Удачи на экзаменах! Все будет хорошо!

Сима
01 июля 2020
Блин, действительно очень круто изложили. А главное- понятно и просто. Начала подготовку к егэ, в следующем году сдавать. Очень помогли разобраться с этой темой! Спасибо)

Александр (админ)
01 июля 2020
Блин, Сима, до чертиков приятно слышать такие слова! Если начала подготовку к ЕГЭ, то будь на связи, мы сейчас делаем крутейший курс подготовки к ЕГЭ, где вот так вот просто все будет объяснять Алексей Шевчук.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector