Um7.ru

Аренда стройтехники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный блок питания

Импульсный блок питания

OLYMPUS DIGITAL CAMERA

Что же это за ИИП такое?!

Импульсные блоки питания (англ. Switching Power Supply) вновь и вновь становятся предметом дискуссий, споров, а их проектирование и конструирование вызывают некоторые затруднения в радиолюбительских кругах. Все чаще именно к импульсным устройствам питания обращаются взоры домашних радиомастеров, поскольку они обладают целым рядом неоспоримых преимуществ по сравнению с традиционными трансформаторными блоками. Однако многие радиолюбители, в частности начинающие, не решаются собирать их, несмотря на их повсеместное применение в современном радиоэлектронном производстве.

Причин тому масса. От непонимания принципов действия до сложности схемотехники импульсных блоков вторичного питания. Некоторые просто напросто не могут найти требующуюся радиоэлементную базу. А вот опытные радиоинженеры давно уже отказались от тяжелых габаритных трансформаторов электропитания в бытовой компактной электронике.

2

Но если для дома применение трансформаторных источников электропитания ещё как то оправдано, то, к примеру, в автомобиле, в дороге, в полевых условиях и т.п. трансформатор вообще бесполезен.

Здесь на выручку приходят импульсные преобразователи напряжения. Они способны черпать электроэнергию буквально от любого аккумулятора или батареи гальванических элементов постоянного тока и преобразовывать ее в нужное напряжение с максимальной мощностью от нескольких ватт до нескольких киловатт.

Согласитесь, когда вы путешествуете любым видом транспорта, и поблизости нет розетки, чтобы подключить к ней зарядное устройство в целях подзарядить севший аккумулятор цифрового фотоаппарата, сотового телефона, цифровой видеокамеры, плеера и мн. др. это, по меньшей мере, доставляет массу неудобств. А сколько раз уже можно было запечатлеть цифровиком что-то понравившееся и тут же отправить с помощью телефона родным и друзьям.

4

А всего лишь и требуется, что спаять несложную схему импульсного преобразователя напряжения на печатной плате, способной уместиться в ладони, и прихватить с собой пару пальчиковых батареек. Вот и все, что нужно для счастья!

Литературный ликбез на тему ИБП

Однако не будем увлекаться, а перейдем непосредственно к сути статьи. Мы уже не раз рассказывали про теоретические и практические аспекты конструирования в домашних условиях импульсных блоков питания, например, Импульсный преобразователь, Импульсный источник питания, Автомобильный преобразователь напряжения и др; излагали методики расчета трансформаторов, делились полезной литературой по силовой электронике, рекомендуемой для прочтения не только начинающим электронщикам, например, Импульсные источники питания, Расчет силового трансформатора; а в статье Схема преобразователя мощностью 1000 ВА развернулся целый, можно сказать, диспут по переделке схемы.

Ну а сегодня ответим на вопрос, заданный одним из радиолюбителей:

а есть что-то на питание +/-25 — 30 вольт (двухполярное) на 4 тройки выводов для запитки УМЗЧ — 4 x TDA7293? Мощностью ватт на 550-600 … для питания от электросети (

По этому поводу решили даже отдельную статью опубликовать, дабы показать общие теоретические принципы разработки импульсных блоков питания.

Изложенный материал с заострением внимания на отдельных вопросах проектирования и схемотехники импульсных блоков вторичного электропитания призван показать радиолюбителям весь алгоритм их расчета. Все технические, конструкторские, схемные дополнения и решения по мере необходимости будут выкладываться ниже в комментариях. Всех заинтересованных электронщиков и опытных радиоинженеров просим принять участие в обсуждении импульсных блоков питания.

Начнем, пожалуй…

OLYMPUS DIGITAL CAMERA

Итак, для начала в общих чертах обозначим, какие основные модули есть в любом импульсном блоке электропитания. В типовом варианте импульсный блок питания условно можно разделить на три функциональные части. Это:

1. ШИМ(PWM)-контроллер, на базе которого собирается задающий генератор обычно с частотой около 30…60 кГц;

2. каскад силовых ключей, роль которых могут выполнять мощные биполярные, полевые или IGBT (биполярные с изолированным затвором) транзисторы; этот силовой каскад может включать в себя дополнительную схему управления этими самыми ключами на интегральных драйверах или маломощных транзисторах; также важна схема включения силовых ключей: мостовая (фул-бридж), полумостовая (халф-бридж) или со средней точкой (пуш-пул);

3. импульсный трансформатор с первичной(ыми) и вторичной(ыми) обмоткой(ами) и, соответственно, выпрямительными диодами, фильтрами, стабилизаторами и проч. на выходе; в качестве сердечника обычно выбирается феррит или альсифер; в общем, такие магнитные материалы, которые способны работать на высоких частотах (в некоторых случаях свыше 100 кГц).

Читайте так же:
Разводомер для ленточных пил

Вот, собственно, и все, что нужно для сборки импульсного блока питания. Выше на фото основные части ИБП выделены. Для наглядности выделим эти модули и на электрической принципиальной схеме любого импульсного блока питания. Для примера:

К слову, здесь силовой каскад включен по схеме со средней точкой.

Теперь помодульно будем разрабатывать схемотехническое решение будущего устройства.

8

Для начала определимся с задающим генератором.

Если быть точнее, то с ШИМ-контроллером. В настоящее время, как вы понимаете, их существует огромное количество. Здесь, пожалуй, основными критериями выбора являются доступность и цена вопроса. Нам нужен не любой генератор, а именно с широтно-импульсной модуляцией. Принцип работы, если в двух словах, то «есть/нет сигнала». На выходе контроллера либо единица (высокий уровень) либо ноль (низкий уровень).

9

В соответствии с этим выходные транзисторы открыты либо закрыты, подают напряжение на катушку импульсного трансформатора либо нет. Причем происходит такое переключение с высокой периодичностью (как указывалось ранее, обычно частота 30…60 кГц).

10

Настраивается частота в зависимости от потребностей проектировщика внешней цепью обвязки ШИМ-контроллера, состоящей, как правило, из резисторов и конденсаторов. Вот недавно даже наткнулся на идею использования в качестве источника ШИМ COM порт компьютера. Ну да ладно… Для нашего будущего блока питания возьмем ШИМ-контроллер К1156ЕУ2. Но это не принципиально. Можно взять практически любой двухтактный контроллер. Например, один из наиболее распространенных TL494. Схема задающего генератора на его базе показана выше. Вообще, типовую схему включения любой другой микросхемы можно найти в технической документации на нее (datasheet).

Расчет частоты импульсов блока питания

Контроллер К1156ЕУ2 предназначен для использования в качестве схемы управления импульсными источниками вторичного электропитания, работающими на частоте до 1 МГц. Благодаря высокому быстродействию микросхема нашла широкое применение и хорошо себя зарекомендовала. В случае отсутствия отечественного варианта контроллера его можно заменить на аналоги типа UC1825, UC2825, UC3825. Полумостовые выходные каскады контроллера спроектированы для работы на большую емкостную нагрузку, например, затворы мощных МОП-транзисторов, и коммутируют как втекающий, так и вытекающий ток. Описание выводов К1156ЕУ2 следующее:

Стоит отметить также, что частота импульсов зависит он номиналов резистора и конденсатора на 5 и 6 выводах микросхемы. Причем за паузу (так называемое, мертвое время) между импульсами отвечает емкость конденсатора. А это прямо сказывается на обеспечении одновременного закрытия выходных ключей, дабы избежать сквозных токов. Вопрос особенно актуален при больших мощностях. Сопротивление резистора выбирается из диапазона 3…100 кОм, емкость конденсатора – 0,47…100 нФ. Номограммы для подбора этих радиодеталей ниже на рисунке:

Таим образом, для обеспечения мертвого времени в ?1,5 мкс (чтобы снизить вероятность появления сквозных токов через MOSFET в силовом каскаде) понадобится конденсатор емкостью 15 нФ (0,015мкФ или 15000 пФ). Теперь смотрим на левый график. О частоте дополнительно будет сказано ниже. На данном этапе в качестве номинальной примем 60 кГц. Значит резистор для нашего задающего генератора нужен номиналом ?3 кОм. Поставим подстроечный на 4,7 кОм. Им можно будет слегка повышать частоту, тем самым повышая мощность блока питания в целом.

Синхронизация двух и более ШИМ-контроллеров

Важной функцией К1156ЕУ2 является их совместное использование. Т.е. один генератор будет ведущим, а другой ведомым. Для этого существует функциональный 4 вывод синхронизации. В итоге можно получить два синхронно работающих генератора ШИМ. Применений такому способу можно найти масса. Поскольку генераторы будут работать синхронно, то каждый из них можно нагрузить отдельным выходным каскадом с силовыми ключами и импульсным трансформатором. При этом можно применить трансформаторы меньшей габаритной мощности. Так, если нам нужна общая мощность импульсного блока питания не менее 600 Вт на 4 УМЗЧ, то можно использовать два трансформатора по 300 Вт с подключенными к ним по два УМЗЧ. Соответственно, мы сможем снять часть нагрузки с транзисторов силового каскада, обмоточного провода, также нам понадобиться сердечник меньшего размера. В связи с этим можно даже сэкономить на покупке радиодеталей для будущего ИБП. Схема синхронизации двух ШИМ-контроллеров (ведущего и ведомого) выглядит так:

Читайте так же:
Типовые и групповые технологические процессы

Однако в общеобразовательных целях ограничимся включением К1156ЕУ2 в единичном (типовом) варианте, т.к. перед нами стоит цель дать вам общие навыки разработки. А уж рациональность использования той или иной схемы, технического решения будет зависеть от цели использования импульсного блока питания.

С первым функциональным модулем будущего блока вторичного электропитания разобрались. Окончательно принимаем схемотехнический вариант генератора на К1156ЕУ2, как показано на рисунке выше под цифрой 1. В случае необходимости на конечной стадии проектирования номиналы деталей можно будет подкорректировать, что, собственно, не скажется на функциональной схеме генератора.

Анатолий Беляев (aka Mr.ALB). Персональный сайт

Есть у нас на кухне электронные весы, которые измеряют вес от 1 г до 5 кг. В весах используется в качестве источника питания батарейка типа Крона на 9 В. Так как весы в основном используются дома и постоянно следить за батарейками как-то не хочется, то возник интерес доработать весы и научить их питаться от сети

220 В. поэтому решил собрать небольшой блок питания для питания весов от сети

220 В. Результат того, что получилось, читайте ниже на странице.

Описание схемы

На Pic 1 приведена схема импульсного блока питания. Построена она по схеме обратноходового импульсного блока питания. Собственно, такие подобные схемы используются в блоках для зарядки сотовых телефонов. Какие-то схемы имеют упрощенную обратную связь по управлению, а какие-то используют для стабилизации выходного напряжения такую же цепь, как в моей схеме, с помощью оптрона U1 PS817 и регулирующего транзистора VT2 BC547.

В последнее время мне нравится использовать интегральный стабилизатор на микросхеме TL431, которая позволяет очень точно поддерживать напряжение в широком диапазоне от 2.5 В до 36 В, с помощью двух внешних резисторов. В моей схеме эту роль выполняют резисторы R10 и R11.

Схема ИБП

Pic 1. Схема импульсного блока питания на 9 В

Ниже показана реализация данного устройства. Для просмотра фоток в лучшем разрешении – кликните по ним.

Чтобы полностью настроить схему, или проверить разные схемы, удобно использовать ныне популярные макетные панели. Соединение происходит обычным втыканием элементов и соединительных проводников в контактные планки. Легко и быстро можно перебрать ряд схем без пайки. Для моей схемки потребовалось три макетные панельки, что тоже удобно, собирая части схемы по блочно.

Pic 2. Макетирование схемы

Импульсный трансформатор Tr2 имеет Ш-образный ферритовый сердечник с габаритами 20 * 20 * 7.6 мм. Параметры обмоток Tr2: L1 имеет 180 витков, а L2, L3 по 12-14 витков. Провод использовал лакированный ПЭЛ 0.22 мм. Обмотка L3 намотана двойным проводом.

Для монтажа схемы использовал универсальную монтажную плату. Продаются на Алиэкспрессе, или в радиолюбительских магазинах. На таких платах есть контактные площадки и она просверлена с определённым шагом вдоль и поперёк. Можно было бы и изготовить печатную плату, но так как устройство единичное, то и так пойдёт .

Pic 3. Нижняя сторона монтажной платы

Снизу платы видно, что использовал и планарные компоненты. В основном это резисторы, диод VD3 1N4148, выпрямительный мостик VD1 MB6S, конденсатор C9. Контактные площадки соединены по схеме кусочками медных проволочек.

Сверху платы установлены объёмные компоненты. Виден Tr1 – сетевой фильтр с конденсаторами С1 и С2. Tr2 – импульсный трансформатор. Силовой транзистор VT1 13003 разместил с краю платы, для возможности прицепить на него небольшой радиатор, но оказалось, что транзистор при работе не греется и радиатор не стал устанавливать. Блок питания может использоваться не только для питания весов, но и как независимый источник питания напряжением 9 В, к примеру, можно запитать плату ARDUINO.

Pic 4. Верхняя сторона монтажной платы

После того, как плата была смонтирована и тщательно проверена, включил её через лампу накаливания 25 Вт последовательно от сети

Читайте так же:
Работа на четырехстороннем станке

220 В к контакту X1. Такая мера предосторожности не помешает, если блок не заработает, то можете избежать сильного ба-баха .

При настройке схемы будьте осторожны, так как на входной части блока питания присутствует высокое напряжение около +310. +325 В.

Pic 5. Проверка работы ИБП после монтажа и настройка выходного напряжения

Блок у меня заработал сразу. Выходное напряжение установил +9.07 В.

Как бы хорошо вы ни сделали плату, как бы хорошо вы ни создали схему, но законченное устройство не оформленное в корпусе не готово к безопасному использованию.

Создание корпуса, в некотором роде, является импровизацией, конечно предварительно рассчитываются все параметры, чтобы и плата влезла и крышка закрылась. Традиционно корпус изготовил из пластика ABS. Нравится мне этот пластик, довольно крепкий и легко обрабатывается и клеится. Можно любую форму придать. Можно применять разные методы в обработке: хоть пилить, хоть точить, хоть фрезеровать, или шлифовать. Можно и красить, а можно и так оставить, промазав кистью тонким слоем ацетона. Тогда поверхность становится блестящей.

Pic 6. Корпус ИБП из ABS-пластика

Данный блок задумывался как приложение к весам, и поэтому отказался от использования выключателя совсем. В весах свой выключатель. Поэтому на передней панеле корпуса есть лишь пара отверстий: под светодиодный индикатор включения в сеть и отверстие под выходной разъём.

Следующим этапом было размещение платы в корпусе. Плата в нижней части корпуса удерживается саморезом. Верхняя крышка захлопывается с помощью четырёх защёлок.

Pic 7. Размещение платы в корпусе

Захлопнута крышка и наклеена этикетка +9В

Pic 8. Законченный вид.

Спичечный коробок традиционно дает возможность оценить реальные размеры устройства в сравнении. Габариты блока питания 85 * 50 * 35 мм.

Импульсный блок питания. Видео

Обнаружил на ресурсе YouTube видео, на котором RED Shade повторяет схему моего блока питания. Можете посмотреть это видео ниже.

Продолжительность фильма 15:00 [мм:сс]

Замечу, что свой блок питания, сделанный на 9В, в последствии перенастроил на напряжение 12 В и применил его для Новогодних гирлянд, см. на моём сайте в статье Управление гирляндами. А весы у меня сейчас запитываются от упрощенного блока питания собранного по подобной обратноходовой схеме на том же транзисторе MJE13003, эта схема приведена на странице моего сайта в статье Импульсный блок питания на одном транзисторе.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Блок питания компьютера АТХ

Блок питания компьютера АТХ

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 — 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.
Читайте так же:
Понизить напряжение на вторичной обмотке трансформатора

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Вариант нагрузки для БП компьютера

Вариант нагрузки для БП компьютера

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Как сделать своими руками

Необходимые инструменты:

  • паяльный аппарат;
  • бокорезы;
  • утконосы;
  • пинцет;
  • скальпель.

Пошаговое руководство

  • Первым делом на входе устанавливается РТС термистор, выполняющий роль полупроводникового резистора с плюсовым коэффициентом по температуре. Он способен резко увеличить свое сопротивление при превышении определенного значения температуры, например, когда необходимо защитить силовые ключи, когда агрегат только начинает работать и конденсаторы еще заряжаются.
  • Далее, монтируется диодный мост для выпрямления входящего напряжения сети током 10А. Можно использовать разные диодные сборки: «вертикалку» или «табуретку».
  • Затем на входе паяется пара конденсаторов в соотношении 1 мкФ на 1 Вт мощности.
  • Используются отечественные резисторы типа МЛТ-2 в качестве гасящего сопротивления в сети переменного тока мощностью 2 Вт.
  • Для регулировки затворов полевых транзисторов, функционирующих под током 600В, монтируется драйвер IR Он попеременно открывает затворы полевых транзисторов с периодичностью, определяемой деталями на ножках Rt и Ct.
  • Полевые транзисторы выбираются не меньше 200В, имеющие минимальное сопротивление в открытой фазе работы. Величина сопротивления прямо пропорциональна нагреву устройства и обратно пропорциональна его КПД.
  • При их монтаже фланцы транзисторов нельзя закорачивать, поэтому применяются прокладки для изоляции.
  • Трансформатор, проще взять обычный понижающий из старого блока ПК. Но можно и самостоятельно намотать на ферритовые торы из расчета на преобразующую частоту 100 кГц и ½ преобразованного напряжения.
  • Трансформаторные выводы закорачивают аналогично плате, из которой он взят.
  • На выходе устанавливаются диоды с небольшими таймингами восстановления − не более 100 нс, например, из группы HER.
  • Буферную емкость на выходе не стоит преувеличивать более 10 тыс. мкФ.
  • Как и любой электрический агрегат, самодельный импульсный блок питания при сборке предъявляет повышенные требования к внимательности и аккуратности в процессе сборки. Необходим верный монтаж полярных деталей и выполнение мер предосторожности в работе с электросетью. Верно, сконструированный блок не требует до настройки или подлаживания.

Проверка

  • подсоединяют выводы от микросхемы к лампе мощностью 40 Вт;
  • подключают устройство к сети. Лампа при этом слабо мигнет;
  • проверяют мультиметром соответствие выходного напряжения желаемому;
  • проверяют мультиметром импульс на затворах ключей;
  • замеряют напряжение постоянного тока на сглаживающих конденсаторах. В норме оно в 1,5 – 2 раза превышает переменное напряжение на диодном мосту.

При верном значении всех величин включают БП с полной нагрузкой.

Этот вид блока питания является классическим и, одновременно, простейшим. Ниже представлена его схема с двухполероудным выпрямителем:

Что такое блок питания.

Важнейшим элементом этого вида БП является понижающий трансформатор (вместо которого может быть использован автотрансформатор). Первичная обводка этого элемента как раз и рассчитана на входящее сетевое напряжение. Ещё одна важная деталь такого БП – это выпрямитель. Он выполняет функцию преобразования переменного напряжения в однонаправленное и пульсирующее постоянное. В подавляющем большинстве случаев используются однополупериодный выпрямитель или двухполупериодный. Первый состоит из одного диода, а последний из четырёх диодов, которые образуют диодный мост. В некоторых случаях могут использоваться и другие схемы этого элемента, например, в трёхфазных выпрямителях или выпрямителях с удвоенным напряжением. Последней важной деталью трансформаторного БП является фильтр, который сглаживает пульсации, создающиеся выпрямителем. Обычно эта деталь представлена конденсатором с большой ёмкостью.

Читайте так же:
Мощная зернодробилка своими руками

Габариты трансформатора. Из базовых законов электротехники выводится следующая формула:

В этой формуле n – это число витков на 1 вольт, f – частота переменного тока, S – площадь сечения магнитопровода, B – индукция магнитного поля в магнитопроводе.

Формула описывает не мгновенное значение, а амплитуду B!

Практически величина индукции магнитного поля (B) ограничена гистерезисом в сердечнике. Это приводит к перегревам трансформатора и потерям на перемагничивании.

Если частота переменного тока(f) равна 50 Гц, то изменяемыми параметрами при конструировании трансформатора остаются только S и n. На практике используется такая эвристика: n (в значении от 55 до 70) / S в см^2

Увеличение площади сечения магнитопровода (S) приводит к повышению габаритов и веса трансформатора. Если же понижать значение S то этим повышается значение n, что в трансформаторах небольшого размера приводит к снижению сечения провода (в противном случае обмотка не поместится на сердечнике)

При увеличении значения n и уменьшения площади сечения происходит значительное увеличении активного сопротивления обмотки. В трансформаторах с малой мощностью на это можно не обращать внимания, поскольку ток, проходящий через обмотку, невелик. Однако, при повышении мощности ток, проходящий через обмотку, увеличивается, а это вместе с высоким сопротивлением обмотки приводит к рассеиванию значительной тепловой мощности.

Всё вышесказанное приводит к тому, что стандартной частоте 50 Гц трансформатор большой мощности (необходимой для питания компьютера) может быть сконструирован только как устройство, имеющее большой вес и габариты.

В современных БП идут по другому пути – увеличивания значения f, которое достигается использованием импульсных блоков питания. Такие БП намного легче и в значительной степени меньше по габаритам, чем трансформаторные. Также импульсные БП не столь требовательны к входному напряжению и частоте.

Преимущества трансформаторных БП

  • Простота изделия;
  • Надёжность конструкции;
  • Доступность элементов;
  • Отсутствие создаваемых радиопомех.

Недостатки трансформаторных БП

  • Большой вес и габариты, которые увеличиваются вместе с мощностью;
  • Металлоёмкость;
  • Необходимость компромисса между снижением КПД и стабильностью выходного напряжения.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Внешний вид платы импульсного блока питания

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.
При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена элемента на плате

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector